Affiliation:
1. Department of Civil and Environmental Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
Abstract
Abstract
Infiltration and inflow (I/I) of extraneous water in separate sewer systems are serious concerns in urban water management for their environmental, social and economic consequences. Effective reduction of I/I requires knowing where excess water ingress and illicit connections are located. The present study focuses on I/I detection in the foul sewer network of a catchment in Trondheim, Norway, during a period without snowmelt or groundwater infiltration. Fiber-optic distributed temperature sensing (DTS) was used for the first time in Norway to detect I/I sources in tandem with closed-circuit television inspection (CCTV) and smoke testing. DTS was an accurate and feasible method for I/I detection, though it cannot identify exact types of failure and sources of I/I. Therefore, other complementary methods must be used, e.g. CCTV or smoke testing. However, CCTV was not completely useful in confirming the DTS results. This study provides practical insights for the rehabilitation and repair of sewer networks that suffer from the undesirable I/I of extraneous water.
Subject
Water Science and Technology,Environmental Engineering
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献