Predicting wastewater treatment plant performance during aeration demand shifting with a dual-layer reaction settling model

Author:

Giberti Matteo1,Dereli Recep Kaan1,Flynn Damian2,Casey Eoin1

Affiliation:

1. School of Chemical and Bioprocess Engineering, University College Dublin, Ireland

2. School of Electrical and Electronic Engineering, University College Dublin, Ireland

Abstract

Abstract Demand response (DR) programmes encourage energy end users to adjust their consumption according to energy availability and price. Municipal wastewater treatment plants are suitable candidates for the application of such programmes. Demand shedding through aeration control, subject to maintaining the plant operational limits, could have a large impact on the plant DR potential. Decreasing the aeration intensity may promote the settling of the particulate components present in the reactor mixed liquor. The scope of this study is thus to develop a mathematical model to describe this phenomenon. For this purpose, Benchmark Simulation Model No.1 was extended by implementing a dual-layer settling model in one of the aerated tanks and combining it with biochemical reaction kinetic equations. The performance of this extended model was assessed in both steady-state and dynamic conditions, switching the aeration system off for 1 hour during each day of simulation. This model will have applications in the identification of potential benefits and issues related to DR events, as well as in the simulation of the plant operation where aerated tank settling is implemented.

Funder

science foundation ireland

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3