Particular internal recirculation frequency scope for enhancing denitrifying phosphorus removal in an oxidation ditch

Author:

Wang Shao Po1,Yu Jing Jie1,Su Fan Kai2,Gao Fu1,Sun Li Ping1

Affiliation:

1. Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China; School of Environmental & Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China and Municipal Experimental Teaching Demonstration Center of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China

2. The First Electromechanical Design and Research Institute, Yunnan Design Institute Group, Kunming, 650228, China

Abstract

Abstract This study investigated the influence of the unique internal recirculation characteristics of an oxidation ditch (OD) system, namely, the internal recirculation frequency (IRF) on denitrifying phosphorus removal (DNPR). The ratios of denitrifying polyphosphate-accumulating organisms (DPAOs) to polyphosphate-accumulating organisms (PAOs) under different IRF conditions were measured using a batch experiment. On this basis, the variation of nutrient transformations were studied using the IRF changes by the mass balance method. The results showed that for the OD system that had an anaerobic zone upstream from the circular corridor and set anoxic and aerobic zones along the circular corridor, when the IRF was between 3.4 h−1 and 7.5 h−1, the DPAOs/PAOs ratio reached about 50%. Approximately 20% of the total phosphorus (TP) was removed and over 11% of the total nitrogen (TN) was transformed into nitrogen gas by the DNPR process, and meanwhile the total removal efficiencies of the TP and TN were over 93% and 80%. When the IRF was greater than 11.5 h−1, the TN removal efficiency decreased significantly, and this was not conducive to simultaneous nitrogen and phosphorus removal. The results indicated that OD process would possess a better DNPR potential if the IRF was controlled within the proper scope.

Funder

National Natural Science Foundation of China

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3