Assessing decentralised wastewater treatment technologies: correlating technology selection to system robustness, energy consumption and GHG emission

Author:

Chong Meng Nan12,Ho Angel N. M.1,Gardner Ted13,Sharma Ashok K.4,Hood Barry3

Affiliation:

1. CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Dutton Park, Queensland 4102, Australia

2. School of Engineering, Monash University, Jalan Lagoon Selatan, Bandar Sunway, Selangor DE, 46150 Malaysia

3. Departments of Environment and Resource Management, Ecosciences Precinct, 41 Boggo Road, Dutton Park, Queensland 4102, Australia

4. CSIRO Land and Water, Highett, Victoria 3109, Australia

Abstract

In this study, we compared two different types of decentralised systems in South East Queensland (SEQ) designed to produce Class A+ recycled water, and assessed their system robustness to shock loads, energy consumption and fugitive greenhouse gas (GHG) emissions. We found that through BioWin® modelling, the membrane reactor (MBR) system was relatively robust to hydraulic shock loads with tolerance up to 1.5 times of the design dry weather daily flow. However, the stability of nitrification process in MBR was significantly affected when the total nitrogen load in the influent increased by 30% while maintaining the constant inlet wastewater flow rate. For energy consumption, we found that the specific energy requirement for the MBR system was 6.1 kWh/kL of treated sewage, which was substantially higher than that for the other decentralised aerobic bio-filtration system (1.9 kWh/kL of treated sewage). We also used a mass balance approach to estimate the fugitive GHG emissions and concluded that electrical energy consumption data alone could substantially underestimate the overall GHG footprints for the decentralised systems. When the estimated CH4 fluxes were added to the energy consumption, the communal septic tanks with aerobic bio-filtration system generated a carbon dioxide equivalent footprint similar to that of the MBR system.

Publisher

IWA Publishing

Subject

Management, Monitoring, Policy and Law,Atmospheric Science,Water Science and Technology,Global and Planetary Change

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3