Reducing life-cycle carbon footprints in the redesign of water distribution systems

Author:

Basupi Innocent1,Kapelan Zoran1,Butler David1

Affiliation:

1. Centre for Water Systems, College of Engineering, Mathematics and Physical Sciences, University of Exeter, North Park Road, Harrison Building, Exeter EX4 4QF, UK

Abstract

Water distribution systems (WDSs) contribute to undesirable greenhouse gas (GHG) emissions that are generated through their component fabrication, construction, operation and disposal processes. The concentration of GHGs in the atmosphere is strongly associated with global warming and climate change. In order to meet the consequent challenge of limiting GHG emissions, the problem of WDS redesign is formulated here as a multi-objective optimisation problem. The three objectives are as follows: (1) minimisation of total redesign cost, (2) maximisation of the WDS resilience, and (3) minimisation of GHG emissions. The resilience index serves as a measure of the WDS's intrinsic capability to ensure continuity of supply to users after sudden failure conditions, whilst the GHG emissions serve as a measure of environmental performance and climate change mitigation. The output from the non-dominated sorting genetic algorithm (NSGA2) optimisation process is a Pareto front containing optimal solutions traded-off in terms of the three objectives analysed. This methodology was applied on the New York Tunnels and the Anytown Network problems. The results obtained demonstrate that the redesign approach leads to cost-effective and resilient solutions that can also mitigate climate change compared with the single-objective (least cost) and other multi-objective redesigns over the long-term planning horizon.

Publisher

IWA Publishing

Subject

Management, Monitoring, Policy and Law,Atmospheric Science,Water Science and Technology,Global and Planetary Change

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3