Affiliation:
1. Centre for Water Systems, College of Engineering, Mathematics and Physical Sciences, University of Exeter, North Park Road, Harrison Building, Exeter EX4 4QF, UK
Abstract
Water distribution systems (WDSs) contribute to undesirable greenhouse gas (GHG) emissions that are generated through their component fabrication, construction, operation and disposal processes. The concentration of GHGs in the atmosphere is strongly associated with global warming and climate change. In order to meet the consequent challenge of limiting GHG emissions, the problem of WDS redesign is formulated here as a multi-objective optimisation problem. The three objectives are as follows: (1) minimisation of total redesign cost, (2) maximisation of the WDS resilience, and (3) minimisation of GHG emissions. The resilience index serves as a measure of the WDS's intrinsic capability to ensure continuity of supply to users after sudden failure conditions, whilst the GHG emissions serve as a measure of environmental performance and climate change mitigation. The output from the non-dominated sorting genetic algorithm (NSGA2) optimisation process is a Pareto front containing optimal solutions traded-off in terms of the three objectives analysed. This methodology was applied on the New York Tunnels and the Anytown Network problems. The results obtained demonstrate that the redesign approach leads to cost-effective and resilient solutions that can also mitigate climate change compared with the single-objective (least cost) and other multi-objective redesigns over the long-term planning horizon.
Subject
Management, Monitoring, Policy and Law,Atmospheric Science,Water Science and Technology,Global and Planetary Change
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献