Performance evaluation of surrogate models for simulating multiphase NAPL transport in heterogeneous aquifers

Author:

Hu Litang12ORCID,Zhang Menglin3,Tian Lei12,Huang Shiqi12

Affiliation:

1. a College of Water Sciences, Beijing Normal University, Beijing 100875, China

2. b Engineering Research Center of Groundwater Pollution Control and Remediation of Ministry of Education, Beijing Normal University, Beijing 100875, China

3. c Beijing Water Science and Technology Institute, Beijing Engineering Technique Research Center for Exploration and Utilization of Non-Conventional Water Resources and Water Use Efficiency, Beijing 100048, China

Abstract

Abstract A better understanding of the distribution of nonaqueous phase liquid (NAPL) plumes is of great importance to groundwater pollution remediation and control. However, the efficiency of surrogate models in simulating the transport is still not well addressed. Selecting a leakage problem as an example, 50 sets of random permeability distributions are generated using the Monte Carlo method, and a numerical model is used to obtain benchmark data of NAPL transport. Four machine learning methods are employed to simulate dense NAPL transport under point leakage sources across spatiotemporal scales. The validation of the models demonstrate that the random forest model can also effectively capture the spatial-temporal distribution of the plume in heterogeneous aquifers, with a maximum mean absolute error and root mean square error smaller than 5.55 × 10−4 and 5.88 × 10−5, respectively. Meanwhile, the multiple phase outcome from the random forest model fits well with the numerical results under the scenarios of linear leakage sources and light NAPL transport. The total time consumed in the computation is reduced by over 150 times after using the surrogate models. The results suggest that surrogate models can provide a promising way to understand NAPL transport in heterogeneous aquifers.

Funder

National Natural Science Foundation of China-Nuclear Technology Innovation Joint Fund

National Natural Science Foundation of China

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3