Boosting hydropower generation of mixed reservoirs for reducing carbon emissions by using a simulation–optimization framework

Author:

He Yanfeng123,Guo Shenglian1,Zhou Yanlai1ORCID,Zhu Di1,Chen Hua1,Xiong Lihua1,Liu Jie14,Xu Chong-Yu5

Affiliation:

1. a State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, China

2. b Power China Chengdu Engineering Corporation Limited, Chengdu 610072, China

3. c Technological Innovation Center of Hydropower, Wind, Solar and Energy Storage of Tibet Autonomous Region, Chengdu 610072, China

4. d School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China

5. e Department of Geosciences, University of Oslo, P.O. Box 1047 Blindern, Oslo N-0316, Norway

Abstract

Abstract The optimization operation of reservoir seasonal Flood-Limited Water Levels (FLWLs) can counterbalance the hydropower generation and flood prevention in the flood season. This study proposes a multi-objective optimization operation model to optimize the reservoir seasonal FLWLs for enhancing synergies of hydropower generation and flood prevention. The integration of the Non-dominated Sorting Genetic Algorithm-II and a simulation-optimization framework is applied for optimizing the joint operation of reservoirs meanwhile achieving the Pareto solutions to reduce computation complexity and time. And then, the Technique for Order of Preference by Similarity to Ideal Solution is utilized to identify the best seasonal FLWL scheme grounded on multi-criteria decision-making analysis. The mixed reservoirs located in the upstream Yangtze River of China constitute the case study. The results showed that: compared with the annual FLWL scheme, the proposed seasonal FLWL schemes without increasing flood prevention risk could facilitate the joint operation of the mixed reservoirs to achieve 868 million kW·h (5.1% improvement) in average hydroelectricity production during the flood season, meanwhile reducing 681 million kg in carbon emissions accordingly. The results support that the proposed methods can boost hydropower production to benefit China's national tactics in accomplishing peak carbon dioxide emissions before 2030.

Funder

National Key Research and Development Program of China

Norges Forskningsråd

Publisher

IWA Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3