Unveiling flood-generating mechanisms using circular statistics-based machine learning approach without the need for discharge data during inference

Author:

Zhang Zhi1ORCID,Wang Dagang1ORCID,Wu Xinxin1,Mei Yiwen1,Qiu Jianxiu1,Zhu Jinxin1

Affiliation:

1. 1 School of Geography and Planning, Sun Yat-sen University, Guangzhou, China

Abstract

Abstract Understanding the drivers of flooding is essential for flood disaster prevention. However, conventional flood prediction methods are hindered by their reliance on local discharge data, which can be constrained by limited spatial resolution. To address this limitation, we present a machine learning model that can categorize floods without requiring discharge data during inference. We first use circular statistics to calculate the relative importance of three candidate flood-generating mechanisms. Global land areas are classified into three primary categories and eight sub-categories based on the proportion of relative importance. A random forest model is then applied to identify the flood types by assuming that the discharge data is unavailable. The findings from circular statistics highlight that globally, soil moisture excess is the most influential driver of floods followed by extreme precipitation and snowmelt, with an average relative importance of 0.535, 0.387, and 0.078, respectively. The RF model performs well in resembling the three primary flood categories with an accuracy of 0.701 and a F1-score of 0.692 in 10-fold cross-validation. The trained gridded-based model provides a swift and efficient approach for analyzing flood mechanisms, even in limited discharge scenarios, allowing for rapid insights.

Funder

National Natural Science Foundation of China

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3