A quality-control framework for sub-daily flow and level data for hydrological modelling in Great Britain

Author:

Fileni Felipe1ORCID,Fowler Hayley J.1ORCID,Lewis Elizabeth1ORCID,McLay Fiona2,Yang Longzhi3ORCID

Affiliation:

1. a School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom

2. b Scottish Environment Protection Agency (SEPA), Angus Smith Building, 6 Parklands Avenue, Eurocentral, Holytown, North Lanarkshire ML1 4WQ, United Kingdom

3. c Department of Computer and Information Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, United Kingdom

Abstract

Abstract The absence of an accessible and quality-assured national flow dataset is a limiting factor in sub-daily hydrological modelling in Great Britain. The recent development of measuring authority APIs and projects such as the Floods and Droughts Research Infrastructure (FDRI) programme aim to facilitate access to such data. Basic quality-control (QC) of 15-minute data is performed by the data collection authorities and the National River Flow Archive (NRFA). Still, there is a need for a comprehensible and verifiable quality control methodology. This paper presents an initial assessment of the available data and examines what needs to be done for applicability of the data at national scale. The 15-minute flow series has many inconsistencies, and there are also inconsistencies with the NRFA Annual Maximum values. When producing a QCed dataset, decisions regarding the retention of data values need to be taken and recorded. Furthermore, QC should remove and rectify erroneous values, such as negative and above world record flows; and an assessment of homogeneity and truncated values in the stations could be beneficial to flag suspect data. The complex chain for production and changeability of flow and level data makes data curation and governance imperative to assure the longevity of the dataset.

Funder

Natural Environment Research Council

Publisher

IWA Publishing

Subject

Water Science and Technology

Reference56 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3