Analytical and numerical solutions of radially symmetric aquifer thermal energy storage problems

Author:

Birhanu Zerihun Kinfe1,Kitterød Nils-Otto2,Krogstad Harald E.3,Kværnø Anne3

Affiliation:

1. a Department of Mathematics, Hawassa University, Ethiopia

2. b Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Norway

3. c Department of Mathematical Sciences, Norwegian University of Science and Technology, Norway

Abstract

Abstract Aquifer thermal energy storage (ATES) systems offer reduced energy costs, lower carbon emissions, and increased energy resilience. The feasibility, however, depends on several factors and usually require optimization. We study an ATES system with injection and extraction wells (cf. graphical abstract). The purpose of the investigation was to calculate the recovery factor of an ATES system with a cyclic repetition of injection and pumping. In the paper, we discuss analytical and numerical radial solutions of differential equations for heat transport in water-saturated porous media. A similar solution was obtained for a 2-D-horizontal confined aquifer with a constant radial flow. Numerical solutions were derived by using a high-resolution Lagrangian approach suppressing spurious oscillations and artificial dispersion. The numerical solution and the analytical solutions give consistent results and match each other well. The solutions describe instantaneous and delayed heat transfer between fluid and solid, as well as time-varying water flow. In hydrological terms, these solutions are relevant for a wide range of problems where groundwater reservoirs are utilized for extraction and storage (namely, irrigation; water supply; geothermal extraction).

Funder

NOMA-Mathematical and Statistical Modeling project

Norwegian Educational Loan Fund

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3