Land use and damaging hydrological events temporal changes in the Sarno River basin: potential for green technologies mitigation by remote sensing analysis

Author:

Mobilia Mirka1ORCID,Longobardi Antonia1,Amitrano Donato2,Ruello Giuseppe3

Affiliation:

1. a Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, SA 84084, Italy

2. b Italian Aerospace Research Centre, Via Maiorise snc, Capua 81043, Italy

3. c Department of Electrical Engineering and Information Technology, University of Naples ‘Federico II’, Via Claudio, 21, Napoli 80138, Italy

Abstract

Abstract The urban growth leads cities to adopt sustainable strategies in order to mitigate the relevant hydrological effects. In this study, the use of synthetic aperture radar SAR imagery has allowed us to demonstrate a 70% increase of the built-up area in Sarno River basin between 1995 and 2016. This increase is linked to the statistical temporal increase of the damaging hydrological events occurring during the same period. To restore the pre-development hydrological condition, a scenario analysis was undertaken where SWMM was used to simulate the hydrological effect of green roof retrofitting landscape design. SAR imagery was furthermore used to explore the potential retrofitting surfaces, leading to defining three different conversion scenarios with 5%, 30% and 100% of potential retrofitting surfaces. The study demonstrated that the pre-development hydrological condition can be never fully restored. Indeed, this scenario is partially equaled only by a 100% green conversion of the existing traditional roofs, with average runoff and peak flow reduction of 41% and 25%, respectively. Such conditions are clearly not feasible, provided the obvious retrofitting limitation for existing buildings. The use of additional nature-based techniques, beyond green roofs conversion, should be explored in the perspective of a balance for urban growth.

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3