New compact scrubber for odour removal in wastewater treatment plants

Author:

Sanchez C.1,Couvert A.2,Laplanche A.2,Renner C.1

Affiliation:

1. *Anjou Recherche - Veolia Water - Chemin de la Digue BP76 78603 Maisons-Laffitte, France (E-mail: celia.sanchez@ensc-rennes.fr; christophe.renner@veolia.com)

2. CNRS UMR 6226- ENSCR Avenue du Général Leclerc 35700 Rennes, France (E-mail: annabelle.couvert@ensc-rennes.fr; alain.laplanche@ensc-rennes.fr)

Abstract

This work presents the performances of a new odour scrubber. The reactor is packed with a new structure which enables co-current operations at high gas velocities. Energy consumption and removal efficiency of sulphur compounds by oxidative alkaline scrubbing were studied. The influence of both superficial gas (USG) and liquid (USL) velocities, ranging from 5.6 to 28 m.s−1 and 0.016 to 0.055 m.s−1 respectively, were quantified. Thus, the range of 0.5 to 5 liquid-to-gas mass ratio (L/G) was studied. A comparison has been made with a previous study on static mixers (SM) and with classical random packed towers (PT). It has been shown that superficial liquid and gas velocities have a significant influence on these parameters. Hydrogen sulphide (H2S) abatement reached values up to 99%. As concerns methylmercaptan (CH3SH), the maximal removal efficiency was 87%. As a result, if well scaled-up, our reactor can be a small single stage efficient apparatus for the elimination of low concentrations of sulphur compounds as H2S and CH3SH in high flow rates of polluted gas effluents.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3