Hydrogen limitation—a method for controlling the performance of membrane biofilm reactor for autotrophic denitrification of wastewater

Author:

Celmer D.1,Oleszkiewicz J.1,Cicek N.2,Husain H.3

Affiliation:

1. Department of Civil Engineering, University of Manitoba, 15 Gillson Street, Winnipeg, Canada R3T 5V6 (E-mail: umcelmer@cc.umanitoba.ca; oleszkie@cc.umanitoba.ca; oleszkie@cc.umanitoba.ca)

2. Department of Biosystems Engineering, University of Manitoba, 15 Gillson Street, Winnipeg, Canada R3T 5V6 (E-mail: nazim_cicek@umanitoba.ca)

3. Zenon Environmental Inc., 3239 Dundas Street West, Oakville, Ontario, Canada L6M 4B2 (E-mail: hhusain@zenon.com)

Abstract

Hydrogen-driven denitrification using the fiber membrane biofilm reactor (MBfR) was evaluated for consistent operation in tertiary wastewater treatment. The possibility of controlling the process rates, as well as biofilm parameters by supplying limited amounts of electron donor (hydrogen), was tested. Limiting the hydrogen supply proved to be efficient in controlling the biofilm growth and performance of the MBfR. Denitrification rates remained unchanged for both synthetic wastewater (SWW) and real municipal wastewater (MWW) effluent as well through the fluctuations in the substrate (NO3-N) concentration. The average denitrification rates were 0.50 (±0.02) g NO3-N per day per m2 for SWW and 0.59 (±0.04) g NO3-N per day per m2 for MWW. Biofilm density rather than thickness was the determining factor in substrate diffusion and biofilm sloughing, ultimately determining operating stability. Limited hydrogen supply assured constant volatile solids (VS) concentration in the biofilm. It was determined that VS/TS ratio higher than 0.25 assured stable biofilm operation. Decrease of VS/TS ratio below 0.25 led to shearing of the non-biological outer layers of the biofilm. The values of chemical oxygen demand (COD), volatile suspended solids (VSS) and total suspended solids (TSS) in the final effluent were stable and well below wastewater effluent guidelines. Substitutions of bicarbonate with gaseous carbon dioxide as the carbon source did not affect denitrification rates despite lower than optimum pH conditions.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3