Integrating principles of nitrogen dynamics in a method to estimate leachable nitrogen under agricultural systems

Author:

Burkart M.1,James D.1,Liebman M.2,van Ouwerkerk E.3

Affiliation:

1. National Soil Tilth Laboratory, 2150 Pammel Drive, Ames, IA 50011, USA, (E-mail: burkart@nstl.gov; james@nstl.gov)

2. 3405 Agronomy Hall, Iowa State University, Ames, IA 50011, USA, (E-mail: mliebman@iastate.edu)

3. 3112 NSRIC, Iowa State University, Ames, IA 50011, USA, (E-mail: evo@iastate.edu)

Abstract

Surplus nitrogen (N) in ground and surface water is of concern in intensive agricultural regions. Surplus N leaches during lengthy periods where annual crop systems are used in temperate regions. This paper presents a model to estimate the surplus N available for leaching to ground water beneath agricultural systems and applies the model to watersheds in an intensive maize and soybean production system. The model utilizes commonly available georeferenced data on soils, crops, and livestock, making it applicable to watersheds in many regions. The model links stocks of N in soil, crops, livestock, fertilizer and the atmosphere. Nitrogen flow centers on exchange between the soil N stocks. Nitrogen mineralization rates are defined for three soil organic matter pools, crop residue, and manure based on carbon:N ratios. Nitrogen exports from the system are harvested crops, livestock and losses to the atmosphere. Application of the model in 26 Iowa watersheds finds surpluses of 18 to 43 kg-N/ha. Surpluses exceeded measured annual nitrate-N loads in regional streams by amounts equivalent to denitrification rates in groundwater. Deficits in soil N were sufficiently small to suggest that the system is in equilibrium with soils of the region.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3