Forecasting influent flow rate and composition with occasional data for supervisory management system by time series model

Author:

Kim J.R.1,Ko J.H.2,Im J.H.1,Lee S.H.1,Kim S.H.1,Kim C.W.1,Park T.J.1

Affiliation:

1. Dept of Environmental Engineering, Pusan National University, Busan, 609-735, Korea, (E-mail: jong93@pusan.ac.kr; hoonyijh@pusan.ac.kr; reallife2@pusan.ac.kr; imsangh@pusan.ac.kr; cwkim@pusan.ac.kr; taejoo@pusan.ac.kr)

2. R&D Centre POSCO E&C, Kyunggi-Do, 445-810, Korea (E-mail: joohko@poscoenc.com)

Abstract

The information on the incoming load to wastewater treatment plants is not often available to apply modelling for evaluating the effect of control actions on a full-scale plant. In this paper, a time series model was developed to forecast flow rate, COD, NH+4-N and PO3-4-P in influent by using 250 days data of field plant operation data. The data for 150 days and 100 days were used for model development and model validation, respectively. The missing data were interpolated by the spline method and the time series model. Three different methods were proposed for model development: one model and one-step to seven-step ahead forecasting (Method 1); seven models and one-step-ahead forecasting (Method 2); and one model and one-step-ahead forecasting (Method 3). Method 3 featured only one-step-ahead forecasting that could avoid the accumulated error and give simple estimation of coefficients. Therefore, Method 3 was the reliable approach to developing the time series model for the purpose of this research.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3