Photodegradation of perfluorooctanoic acid in water under irradiation of 254 nm and 185 nm light by use of persulfate

Author:

Chen J.1,Zhang P.1

Affiliation:

1. Department of Environmental Science and Engineering, Tsinghua University, Beijing, 100084, China

Abstract

The photodegradation of perfluorooctanoic acid (PFOA) in water using two types of low-pressure mercury lamps, one emitting 254 nm and the other emitting 254 nm and 185 nm, by use of persulfate (K2S2O8) as an oxidant was investigated. PFOA was significantly decomposed under irradiation of 185 nm light, while it was very slow and negligible under 254 nm light irradiation. This was due to its strong absorption of PFOA from deep UV-region to 220 nm and a weak absorption from 220–460 nm. The addition of K2S2O8 led to efficient PFOA decomposition and defluorination no matter what light irradiation. Sulfate radical anion (SO−4), generated by photolysis of K2S2O8, initiated the oxidation of PFOA. Under irradiation of 185 nm light, PFOA was jointly decomposed through 185 nm light photolysis and initiation of sulfate radical. However, under irradiation of 254 nm light, PFOA decomposition was only initiated by sulfate radical. PFOA decomposed and defluorinated much faster under oxygen atmosphere than under nitrogen atmosphere, which suggested that oxygen molecules played an important role in PFOA decomposition.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3