Fate and transport of endocrine-disrupting compounds (oestrone and 17β-oestradiol) in a membranebio-reactor used for water re-use

Author:

Chang Seojin1,Jang Namjung1,Yeo Younghyun1,Kim In S.1

Affiliation:

1. Bio-Environmental Engineering Lab. (BEEL), Gwangju Institute of Science and Technology (GIST), Gwangju, 500-712, Korea

Abstract

Oestrogens have been detected in the effluents of sewage treatment plants (STPs) in several countries, as well as in surface water. This occurrence is fundamentally attributed to the excretion of oestrogen from humans and mammalian bodies, and the incomplete removal of these compounds from wastewater treatment plants. These micro-pollutants are causing great concern when it comes to water re-use. There is a lack information on endocrine-disrupting compounds (EDCs) such as oestrogen in water re-use systems, e.g. a membrane bioreactor (MBR). It is clear that there is a strong need for “EDCs in MBR for water re-use”. This study examined an E1 and E2 biodegradation batch test by an activated sludge and hollow fibre membrane filtration test with and without a bio-cake. E2 was effectively removed, even in high initial concentrations (1,000 ppb). E2 was oxidised into E1, and E1 had a lower adsorption rate than E2. The membrane with the bio-cake provided better removal than the virgin membrane.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3