Experimental study on sludge reduction by ultrasound

Author:

Cao X.Q.1,Chen J.1,Cao Y.L.1,Zhu J.Y.1,Hao X.D.1

Affiliation:

1. The R & D Centre for Sustainable Environmental Biotechnology, Beijing Inst. of Civil Engineering and Architecture, 1 Zhanlanguan Rd., Beijing, 100044, China

Abstract

In recent years, considerable impetus emerges to develop strategies for reducing excess sludge produced in biological wastewater treatment (BWT) systems. In this study, an experiment on sludge reduction by ultrasound treatment was conducted. The influences of sonication on observed yield, sludge reduction, effluent quality, sludge settleability and stability were extensively evaluated. It was found that ultrasound had an impressive potential to reduce sludge production. Moreover, it was also concluded that a treatment time of 10 minutes was more cost-effective for sludge reduction, and a reduction by 44% was reached with an ultrasonic intensity of 0.25 w/ml. The reduction could be mainly attributed to disintegration of bio-flocs and cryptic growth. In addition, sonication time seemed to be more effective to reduce sludge production compared with ultrasonic intensity. Slight deterioration of the effluent quality and some variations of the sludge settleability and stability were observed after ultrasound treatment.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3