Adsorption and recovery of alkylphenol polyethoxylates from synthetic wastewater using hexagonal mesoporous silicate

Author:

Punyapalakul P.1,Takizawa S.2

Affiliation:

1. Department of Environmental Engineering, Chulalongkorn University, Bangkok, 10330, Thailand, (E-mail: patiparn.p@eng.chula.ac.th)

2. Department of Urban Engineering, University of Tokyo, Tokyo, 113-8656, Japan, (E-mail: takizawa@env.t.u-tokyo.ac.jp)

Abstract

A large amount of alkylphenol polyethoxylate (APnEOs), one of endocrine disrupters, is disposed of directly to biological wastewater treatment plants. But microbial oxidation processes cannot completely degrade these molecules to nontoxic forms. Adsorption and recovery efficiency of APnEOs was investigated using four different types of Hexagonal Mesoporous Silicate (HMSs) and powdered activated carbon (PAC). HMSs were synthesized by surfactant-templating methods, and two of them were subsequently grafted with surface functional groups. The two types of organic functional groups grafted on the surface were n-octyldimethyl- and 3-mercaptopropyl- groups. Titanium substituted HMS was also made in the same way as HMS. Adsorption of APnEOs on synthesized HMSs was higher than that on PAC. Larger pore sizes of HMS and Ti-HMS enhanced accessibility of APnEOs to active surface sites in mesopores, which realized higher adsorption capacities and L-shape (Langmuir) adsorption isotherms. Adsorption capacities of APnEOs are influenced by water solubility of APnEOs. APnEOs adsorbed on HMSs can be completely recovered by a mixture of alcohol and water at 5 : 5 ratio, which is more effective than the recovery from PAC.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3