Modification of the Thomas model for predicting unsymmetrical breakthrough curves using an adaptive neural-based fuzzy inference system

Author:

Amiri Mohammad Javad1,Khozaei Maryam2,Gil Antonio3

Affiliation:

1. Department of Water Engineering, College of Agriculture, Fasa University, 74617-81189 Fasa, Iran

2. Department of Water Engineering, College of Agriculture, Shiraz University, Shiraz 71365, Iran

3. Department of Sciences, Public University of Navarra, Campus of Arrosadia, 31006 Pamplona, Spain

Abstract

Abstract The Thomas equation is a popular model that has been widely used to predict breakthrough curves (BTCs) when describing the dynamic adsorption of different pollutants in a fixed-bed column system. However, BTCs commonly exhibit unsymmetrical patterns that cannot be predicted using empirical equations such as the Thomas model. Fortunately, adaptive neural-based fuzzy inference systems (ANFISs) can be used to model complex patterns found in adsorption processes in a fixed-bed column system. Consequently, a new hybrid model merging Thomas and an ANFIS was introduced to estimate the performance of BTCs, which were obtained for Cd(II) ion adsorption on ostrich bone ash-supported nanoscale zero-valent iron (nZVI). The results obtained showed that the fair performance of the Thomas model (NRMSE = 27.6% and Ef = 64.6%) improved to excellent (NRMSE = 3.8% and Ef = 93.8%) due to the unique strength of ANFISs in nonlinear modeling. The sensitivity analysis indicated that the initial solution pH was a more significant input variable influencing the hybrid model than the other operational factors. This approach proves the potential of this hybrid method to predict BTCs for the dynamic adsorption of Cd(II) ions by ostrich bone ash-supported nZVI particles. This article has been made Open Access thanks to the generous support of a global network of libraries as part of the Knowledge Unlatched Select initiative.

Publisher

IWA Publishing

Subject

Infectious Diseases,Microbiology (medical),Public Health, Environmental and Occupational Health,Waste Management and Disposal,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3