Evaluation of adaptive low cost solar water pasteurization device for providing safe potable water in rural households

Author:

Zaman Sharmin12,Yousuf Abu3,Begum Anowara2,Bari Md Latiful1,Rabbani K. S.3

Affiliation:

1. Centre for Advanced Research in Sciences, University of Dhaka, Dhaka 1000, Bangladesh

2. Department of Microbiology, University of Dhaka, Dhaka 1000, Bangladesh

3. Department of Biomedical Physics and Technology, University of Dhaka, Dhaka 1000, Bangladesh

Abstract

Abstract This study was conducted to evaluate the effectiveness of a simplified, low cost, pasteurization device in inactivating the diarrheal pathogens present in pond/lake/river water in order to provide safe potable water to people living in the rural areas of low resource countries. In this process, water in polyethylene bags was exposed to sunshine, where UV radiation emissions and heat absorption from the sunshine occurs simultaneously, and maintaining the heating at <60 °C, and minimum UV radiation emissions of 996.2 W/m2 for approximately 30 minutes was found enough to inactivate diarrheal pathogens in water. The synergistic effect of heat, UV radiation emission and holding time causes the destruction of diarrheal pathogens. However, the performance of the device depends on the thickness of the insulation and the air gap between polyethylene bags. Regardless of sample sources, the highest population reduction of Escherichia coli observed in the bacterial challenge study was 6.8 ± 0.4 log CFU/ml. The physicochemical properties were found acceptable compared with USEPA potable water quality except turbidity, which is acceptable according to the BDS standard, and the shelf-life study results demonstrated that 6 months' storage of pasteurization device-treated water at room temperature is possible without compromising water quality. Therefore, this simplified pasteurization device could be useful in potable water-scarce areas of the world.

Publisher

IWA Publishing

Subject

Infectious Diseases,Microbiology (medical),Public Health, Environmental and Occupational Health,Waste Management and Disposal,Water Science and Technology

Reference26 articles.

1. Postreplication repair mechanisms in the presence of DNA adducts in Escherichia coli;Mutation Research/Reviews in Mutation Research,2011

2. Photocatalytic enhancement for solar disinfection of water: a review;International Journal of Photoenergy,2011

3. Intracellular mechanisms of solar water disinfection;Scientific Reports,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3