Replacement of Secondary Clarification by Membrane Separation—Results with Tubular, Plate and Hollow Fibre Modules

Author:

Günder Berthold,Krauth Karlheinz

Abstract

Membrane separation systems can replace the final clarification step to separate mixed liquor suspended solids (MLSS) in the activated sludge processes. Mixed liquor suspended solids concentrations as high as 20 g/l can be obtained compared with the typical 3-4 g/l for conventional activated sludge/secondary clarifier systems. This leads to much smaller reactor volumes. In addition, excellent, solids free effluent qualities can be achieved with this process technology. This paper reports about the parallel investigation of three membrane systems installed within or outside bioreactors of 7 to 9 m3 volume and flow rates from 1 to 3 m3/h. The different membrane modules were investigated: plate module (80 m2 membrane surface), hollow fibre module (80 m2) and tubular module (45 m2). At MLSS concentrations up to 25 g/l and water temperatures from 10 to 25°C a stable operation of the membrane systems was achieved for a period of more than one year. The energy consumption was approximately 1.5 kWh/m3 for the plate and hollow fibre and 3.0 kWh/m3 for the tubular module system.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Baffled membrane bioreactor: Efficient nutrient removal, operational energy reduction, and modeling;Current Developments in Biotechnology and Bioengineering;2020

2. Drastic reduction of sludge in wastewater treatment plants: co-digestion of sewage sludge and aqueous waste in a thermophilic membrane reactor;Environmental Technology;2019-02-05

3. Membrane Bioreactors for Wastewater Treatment;Fundamentals of Quorum Sensing, Analytical Methods and Applications in Membrane Bioreactors;2018

4. A novel eductor-based MBR for the treatment of domestic wastewater;Water Research;2016-09

5. Organics and its Control in Reclaimed Water;Applied Mechanics and Materials;2014-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3