How ‘Green’ Are Aquaculture, Constructed Wetlands and Conventional Wastewater Treatment Systems?

Author:

Brix Hans

Abstract

The term ‘green’ is nowadays widely used (and misused) in connection with many types of technologies. If a technology is ‘green’ it usually means that the technology requires less non-renewable energy sources than other alternatives. However, other parameters need to be considered as well, such as sustainability, recycling potential, treatment capacity and potential, conservation of ecosystems, etc. In this paper the energy requirements and nutrient recycling potential of constructed wetlands and wastewater aquaculture facilities are compared with that of conventional wastewater treatment technologies. The energy requirements of constructed wetlands are very low, but if significant reuse of nutrients is included (aquaculture), the energy requirements increase significantly and usually beyond the energy equivalent of the biomass produced. This is especially true in cold temperate climates where the aquaculture systems need to be housed in heated greenhouses and artificial light must be provided to secure operation throughout the year. In countries where fresh water itself is a limiting resource and where the economic capability may limit the use of artificial fertilisers, the reuse potential of wastewater may be more important. The potential for sustainable cropping of the plant biomass is excellent in tropical wetlands as the plants have a high productivity and a continuous growing season. In order to evaluate in more detail the ‘greenness’ of the different wastewater treatment technologies, the life-cycle approach might be applied. However, because constructed wetlands, besides the water quality improvement function, perform a multitude of other functions such as biodiversity, habitat, climatic, hydrological and public use functions, methodologies need to be developed to evaluate these functions and to weigh them in relation to the water quality issues.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3