Different mechanisms for the anaerobic storage of organic substrates and their effect on enhanced biological phosphate removal (EBPR)

Author:

Carucci A.1,Lindrea K.2,Majone M.3,Ramadori R.4

Affiliation:

1. DIGITA, Faculty of Engineering, University of Cagliari09123 CagliariItaly

2. Biotechnology Research Center, La Trobe University, P.O. Box 199Bendigo, Victoria 3550Australia

3. Department of Chemistry, University “La Sapienza”, P.le A. Moro 500185 RomeItaly

4. Water Research Institute, CNR, Via Reno 100198 RomeItaly

Abstract

The driving force for Enhanced Biological Phosphorus Removal (EBPR) is the presence of an anaerobic zone that enriches the activated sludge for P-accumulating microorganisms (PAOs). According to accepted models, PAOs anaerobically store volatile fatty acids (VFAs) as polyhydroxyalkanoates (PHAs) utilising polyphosphate hydrolysis as the energy source. For substrates other than VFAs, one hypothesis is that other heterotrophs convert them to VFAs, so acting in favour of PAOs. However, particular glycogen accumulating microorganisms have been described (GAOs), that compete against PAOs being able to store anaerobically many substrates into PHAs, by transforming intracellular carbohydrates (glycogen) into PHAs, as the energy source. In this perspective, the paper presents a summary (with new findings) of a long experimental work to study EBPR processes with a lab-scale Sequencing Batch Reactor fed with different organic substrates (peptone, glucose and acetate, separate or in mixtures). Our results show that EBPR can be obtained with substrates other than VFAs with neither their pre-conversion to VFAs nor their storage as PHA. Moreover, in different periods anaerobic uptake of glucose was possible with and without EBPR. In both cases, the stored polymer was glycogen while the energy source was either polyphosphate hydrolysis or lactic fermentation, respectively. These results are not consistent with the reported behaviour of PAOs or GAOs, so showing that many different mechanisms of anaerobic uptake and storage of substrates can act in favour of, or against EBPR. Deeper insight on these mechanisms is needed to improve design and operation of EBPR plants.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3