Biological Phosphorus Removal Using a Biofilm Membrane Reactor: Operation at High Organic Loading Rates

Author:

Castillo Pedro A.1,González-Martínez Simón2,Tejero Iñaki1

Affiliation:

1. University of Cantabria, Department of Water and Environment, School of Civil Engineering, Avda. de los Castros s/n, 39005 Santander, Spain

2. Institute of Engineering, National University of Mexico, 04510 Mexico D.F., Mexico

Abstract

This research describes Biological Phosphorus Removal at Organic Loading Rates from 5 to 30 g COD/m2·d using a laboratory scale Sequencing Batch Biofilm Membrane Reactor. The reactor was fed with synthetic wastewater based on sodium acetate with a COD:N:P ratio of 20:5:1. An average PO4-P removal of 72% was observed when the organic load was kept under 15 gCOD/m2·d. Maximum PO4-P removal of 85% was associated with a consumption rate of 700 mgPO4-P/m2·d. Increasing with the organic load, the PO4-P released during the anaerobic phase averages 40% over the influent concentration, showing a maximum value of 107%. Throughout the experiments, overall COD removal rates were above 90%, and the COD uptake during the anaerobic phase ranged between 60 and 80% for organic loading rates under 15 gCOD/m2·d. Simultaneous nitrification and dentrification took place during the transition from aerobic to anaerobic conditions at the beginning of every cycle. Average transformation rates between 0.6 to 2.0 gNH4-N/m2·d and 0.3 to 1.2 gNO3-N/m2·d were observed for organic loading rates under 15 gCOD/m2·d, corresponding to average NH4-N removal rates between 50 and 70%. Average effluent NO3-N ranged between 1.5 and 10.6 mg/l. Phosphorus contents of the biofilm based on dry mass ranged between 4.2 and 5.2%.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3