An Alternative Use of Biogas Applied at the Water Denitrification

Author:

Houbron Eric1,Torrijos Michel2,Capdeville Bernard3

Affiliation:

1. Instituto Tecnológico de Orizaba Ave. Instituto tecnológico, No 852, col. E. Zapata 94320, Orizaba, Ver. Mexico

2. INRA, Laboratoire de Biotechnologie de l'Environnement, Narbonne, France

3. INSA, Unite de REcherche et Traitement Biologique, Toulouse, France

Abstract

The urban wastewater treatment plants of the 21st century will have to consider the removal of the carbon, nitrogen and phosphorus. On one hand, the usual exogenous carbon source for tertiary treatment are generally supplied as methanol, ethanol, acetic acid, etc. On the other hand, the anaerobic wastewater treatment plant produces a biogas which contains up to 90 % of methane and which could be used as a cheap carbon source for denitrification. The first step of this work conducted in batch culture with or without copper, has shown that a consortium of methanotrophic and denitrifying bacteria are involved in this process. The methanotrophic bacteria oxidises methane under aerobic conditions via a specific enzyme (Methane Mono Oxygenase) and produces a soluble organic carbon in the liquid phase available for the denitrification. During the batch culture, when dissolved oxygen concentration decreases below 1 mg/l, a maximum denitrification rate of 3.3 mg N-NO3/l.h was obtained with 80 μg/l of copper in the medium. The consumption rate of methane was 3.5 mmol CH4/l.h. The molar ratio of the oxygen/methane consumed was 1.27, and the mass ratio of C-CH4 consumed to N-NO3 eliminated was 10.9. During chemostat culture, denitrification on synthetic and real nitrifying water was tested. The stability of the consortium has been verified under different culture conditions. The variation of the dilution rate showed that the maximum one was 0.16 h−1. The specific denitrification rate obtained with synthetic and real water were respectively 6.1 and 9.47 mg N-NO3/TSS.h, with a C/N mass ratio of 3.6 and 4.6. In chemostat, culture the efficiency of the methane oxidation and the denitrification was improved.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3