Seasonality of Cryptosporidium oocyst detection in surface waters of Meru, Kenya as determined by two isolation methods followed by PCR

Author:

Muchiri John M.1,Ascolillo Luke2,Mugambi Mutuma1,Mutwiri Titus1,Ward Honorine D.2,Naumova Elena N.2,Egorov Andrey I.2,Cohen Seth2,Else James G.3,Griffiths Jeffrey K.2

Affiliation:

1. Kenya Methodist University, PO Box 267-60200, Meru, Kenya

2. Department of Public Health and Family Medicine, Tufts University School of Medicine, 136 Harrison Avenue, Boston, Massachusetts 02111, USA

3. Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, Georgia 30329, USA

Abstract

Meru, Kenya has watersheds which are shared by wildlife, humans and domesticated animals. These surface waters can be contaminated by the waterborne pathogen Cryptosporidium. To quantify the seasonality and prevalence of Cryptosporidium in Meru regional surface waters, we used a calcium carbonate flocculation (CCF) and sucrose floatation method, and a filtration and immunomagnetic bead separation method, each of which used PCR for Cryptosporidium detection and genotyping. Monthly water samples were collected from January through June in 2003 and 2004, bracketing two April-May rainy seasons. We detected significant seasonality with 8 of 9 positive samples from May and June (p<0.0014), which followed peak rainy season precipitation and includes some of the subsequent dry season. Six of 9 positive samples revealed C. parvum, and 3 contained C. andersoni. None contained C. hominis. Our results indicate that Meru surface waters are Cryptosporidium-contaminated at the end of rainy seasons, consistent with the timing of human infections reported by others from East Africa and contrasting with the onset of rainy season peak incidence reported from West Africa.

Publisher

IWA Publishing

Subject

Infectious Diseases,Microbiology (medical),Public Health, Environmental and Occupational Health,Waste Management and Disposal,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3