Detection of Cryptosporidium species and sources of contamination with Cryptosporidium hominis during a waterborne outbreak in north west Wales

Author:

Chalmers Rachel M.1,Robinson Guy1,Elwin Kristin1,Hadfield Stephen J.1,Thomas Euron2,Watkins John3,Casemore David4,Kay David4

Affiliation:

1. UK Cryptosporidium Reference Unit, NPHS Microbiology Swansea, Singleton Hospital, Swansea SA2 8QA, UK

2. Environmental Health Department, Gwynedd County Council, Embankment Road, Pwllheli, Gwynedd, LL53 5AA, UK

3. CREH Analytical Limited, Hoyland House, 50 Back Lane, Horsforth Leeds, LS18 4RS, UK

4. Centre for Research into Environment and Health, Aberystwyth University, Wales SY23 3DB, UK

Abstract

As part of investigations into the cause of a waterborne outbreak of Cryptosporidium hominis infection linked to a mains water supply, surface waters and wastewater treatment plants were tested for Cryptosporidium spp. Oocyst counts in base flow surface water samples ranged from nil to 29 per 10 l. Oocyst counts in effluent from a community wastewater treatment plant were up to 63 fold higher and breakout from one septic tank five logs higher. There were no peak (storm) flow events during the investigation. C. hominis, four named genotypes (cervine, muskrat II, rat, W19) and six new small subunit ribosomal RNA gene sequences were identified. Four of the new sequences were closely related to Cryptosporidium muskrat genotype I, one was closely related to the fox genotype and one to Cryptosporidium canis. C. hominis was found extensively in the catchment, but only at sites contaminated by wastewater, and in the treated water supply to the affected area. All were gp60 subtype IbA10G2, the outbreak subtype. Multiple routes of contamination of the reservoir were identified, resulting in persistent detection of low numbers of oocysts in the final water. This work demonstrates the utility of genotyping Cryptosporidium isolates in environmental samples during outbreak investigations.

Publisher

IWA Publishing

Subject

Infectious Diseases,Microbiology (medical),Public Health, Environmental and Occupational Health,Waste Management and Disposal,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3