Characterisation of suspended and sedimented particulate matter in blue-green infrastructure ponds

Author:

Krivtsov V.12,Arthur S.1,Buckman J.1,Kraiphet A.1,Needham T.3,Gu Wanying3,Gogoi Prasujya3,Thorne C.3

Affiliation:

1. Heriot-Watt University, Edinburgh, UK

2. Edinburgh University, Edinburgh, UK

3. Nottingham University, Nottingham, UK

Abstract

Abstract Blue-green infrastructure (BGI) ponds have an important function of alleviating flood risk and provide water quality improvements among other multiple benefits. Characterisation of bottom sediments and suspended particulate matter (SPM) is understudied, but is indispensable for assessing the ponds' functioning because of their role in biogeochemical cycling and pollutant adsorption. Here we report on the analysis of particle sizes and chemistry from multiple locations. The results have shown that SPM in these ponds includes particles of both biological and abiotic origin, and the in situ produced organic matter constitutes a major part of SPM. The relevance of biological processes is often overlooked, but a combination of scanning electron microscopy (SEM) observations and chemical analysis highlights its primary importance for characterisation of the particulate matter. A considerable proportion of both suspended and sedimented particulates is smaller than 100 microns. There is normally a large fraction of small silt-sized particles, and often a considerable proportion of very fine particles (clay-size). Although for some spectra unimodal distribution has been observed, in many cases the revealed particle size distribution (PSD) was bimodal, and in some instances more than two modes were revealed. A complex PSD would be expected to result from a combination of simple unimodal distributions. Hence the multimodality observed may have reflected contributions from different sources, both abiotic and biological. Furthermore, many smaller particles appear to be interconnected by detrital matter. Among chemical elements routinely detected within the SPM in significant concentrations were Si, Al, Ca, Mg, Fe, K, Mn, P, Cl and S. In a number of cases, however, there were less expected elements such as Ti, Y, Mo, Cr and even Au; these may have reflected the effect of car park and road runoff and/or industrial pollution. Most of these elements (except Mo and Au) and up to 30 others were also routinely detected in sediment samples. Such pollutants as Co, Cu, Ni, Zn and As were detected in bottom sediments of all ponds. There were a number of correlations between pollutants in sediments and the particle's median diameter. However, aggregation leads to large low density flocks and masks correlation of chemicals with SPM particle size. Statistical associations among the elements aided the understanding of their sources and pathways, as well as the underlying biological and abiotic processes. Specifically, our analysis implicated contributions from such sources as allochthonous and autochthonous detritus, roadside and industrial pollution, biologically induced precipitation, and discarded electronics. Elevated levels of rare earth elements (REE) and other trace elements open a possibility of their recovery from the sediments, which should be considered among the multiple benefits of BGI.

Funder

Engineering and Physical Sciences Research Council

Publisher

IWA Publishing

Subject

General Medicine

Reference75 articles.

1. Modelling the long-term suspended sedimentological effects on stormwater pond performance in an urban catchment;Journal of Hydrology,2019

2. Interactions between trace elements and dissolved organic matter in the stagnant anoxic deep layer of a meromictic lake;Limnology and Oceanography,2000

3. Allen D. 2017 Beyond the Design Event: Sediment Pollution Movement in SuDS. PhD Thesis, Heriot-Watt University.

4. Multiple rainfall event pollution transport by sustainable drainage systems: the fate of fine sediment pollution;International Journal of Environmental Science and Technology,2017

5. Reservoir sediments: a sink or source of chemicals at the surface water-groundwater interface;Environmental Monitoring and Assessment,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3