Precision of raw and bias-adjusted satellite precipitation estimations (TRMM, IMERG, CMORPH, and PERSIANN) over extreme flood events: case study in Langat river basin, Malaysia

Author:

Soo Eugene Zhen Xiang1,Wan Jaafar Wan Zurina1,Lai Sai Hin1,Othman Faridah1,Elshafie Ahmed1,Islam Tanvir2,Srivastava Prashant3,Othman Hadi Hazlina Salehan1

Affiliation:

1. Department of Civil Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia

2. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA

3. Hydrological Sciences, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA

Abstract

Abstract Although satellite precipitation products (SPPs) increasingly provide an alternative means to ground-based observations, these estimations exhibit large systematic and random errors which may cause large uncertainties in hydrologic modeling. Three approaches of bias correction (BC), i.e. linear scaling (LS), local intensity scaling (LOCI), and power transformation (PT), were applied on four SPPs (TRMM, IMERG, CMORPH, and PERSIANN) during 2014/2015 extreme floods in Langat river basin, and the performance in terms of rainfall and streamflow were investigated. The results show that the original TRMM had a potential to predict the peak streamflow although CMORPH show the best performance in general. After performing BC, it is found that the LS-IMERG and LOCI-TRMM show the best performance at both rainfall and streamflow analysis. Generally, it is indicated that the current SPP estimations are still imperfect for any hydrological applications. Cross validation of different datasets is required to avoid the calibration effects of datasets.

Funder

Ministry of Higher Education Malaysia

Institut Pengurusan dan Pemantauan Penyelidikan, Universiti Malaya

Publisher

IWA Publishing

Subject

Management, Monitoring, Policy and Law,Atmospheric Science,Water Science and Technology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3