Multiscale attribution analysis for assessing effects of changing environment on runoff: case study of the Upstream Yangtze River in China

Author:

Zhang Yu1,Wang Manlin2,Chen Juan3,Zhong Ping-an3,Wu Xiufeng1,Wu Shiqiang1

Affiliation:

1. State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China

2. Geological Survey of Jiangsu Province, Nanjing, China

3. College of Hydrology and Water Resources, Hohai University, Nanjing, China

Abstract

Abstract Evaluating the changes in runoff and analyzing its attribution under the changing environment is of great significance to water resources management. In this study, eight hydrological stations at the outlets of tributaries of the Upstream Yangtze River are selected. Based on the observed runoff data from 1951 to 2013, the spatial-temporal characteristics in runoff change are identified from time series analysis. Our results show that runoff in the Upstream Yangtze River decreases significantly with a rate of −7.6 km3 per ten years in general. The most significant declines in runoff are observed in the mainstream, Minjiang River, Tuojiang River, and Jialing River, while slight increase in runoff is found in the source area of the Yangtze River. Furthermore, the effects on runoff change from climate change and human activities are evaluated using the Soil and Water Assessment Tool (SWAT) and modified Fixing-Changing (MFC) method at multiple scales. Our results suggest that the main contributions to runoff change are from climate change variabilities (70%), land use/cover change (LUCC, 10%), and other human influence (20%). When examined at different spatial and temporal scales, climate change always appears to be the main cause of runoff change, although its contribution decreases over time.

Funder

the National Key R&D Program of China

the Science and Technology Support Program of Jiangsu Province

the China Postdoctoral Science Foundation

the financial support from Nanjing Hydraulic Research Institute

Publisher

IWA Publishing

Subject

Management, Monitoring, Policy and Law,Atmospheric Science,Water Science and Technology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3