Incorporating Pacific Ocean climate information to enhance the tree-ring-based streamflow reconstruction skill

Author:

Bukhary Saria1,Kalra Ajay2,Ahmad Sajjad3

Affiliation:

1. Department of Civil Engineering, NED University of Engineering and Technology, University Road, Karachi, Pakistan

2. School of Civil, Environmental and Infrastructure Engineering, Mail Code 6603, Southern Illinois University, 1230 Lincoln Dr. Carbondale, Illinois 62901, USA

3. Department of Civil and Environmental Engineering and Construction, University of Nevada, 4505 Maryland Pkwy, Las Vegas, NV 89154, USA

Abstract

Abstract The Sacramento River Basin (SRB) and the San Joaquin River Basin (JRB) have a history of recurring droughts. Both are important for California, being the crucial source of water supply. The available instrumental records may not depict the long-term hydrologic variability encompassing the duration and frequency of the historic low flow events. Thus, streamflow reconstruction becomes important in the current scenario of climatic alteration, escalating population and growing water needs. Studies have shown that Pacific Decadal Oscillation (PDO), Southern Oscillation Index (SOI), and Pacific Ocean sea surface temperature (SST) influence the precipitation and streamflow volumes of southwestern United States, particularly California. The focus of this study is to enhance the traditional tree-ring chronology (TRC)-based streamflow reconstruction approach by incorporating the predictors of SST, PDO, and SOI together with TRC, in a stepwise linear regression (SLR) model. The methodology was successfully applied to selected gauges located in the SRB and the JRB using five SLR models (SLR 1–5), and reconstructions were developed from 1801 to 1980 with an overlap period of 1933–1980. An improved reconstruction skill was demonstrated by using SST in combination with TRC (SLR-3 and SLR-5) (calibration r2 = 0.6–0.91 and cross-validation r² = 0.44–0.74) compared with using TRC only (SLR-1), or TRC along with SOI and PDO (SLR-2; calibration r2 = 0.51–0.78 and cross-validation r² = 0.41–0.68).

Publisher

IWA Publishing

Subject

Management, Monitoring, Policy and Law,Atmospheric Science,Water Science and Technology,Global and Planetary Change

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A 2D Rain-on-Mesh Model for Simultaneous Hydrologic and Hydraulic Computation;World Environmental and Water Resources Congress 2023;2023-05-18

2. Floodplain Mapping of Ungauged Watershed Using HEC Models and PERSIANN Precipitation;World Environmental and Water Resources Congress 2023;2023-05-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3