Multi-time scale co-integration forecast of annual runoff in the source area of the Yellow River

Author:

Zhang Jinping12,Li Hongbin1,Sun Bin1,Fang Hongyuan1

Affiliation:

1. School of Water Conservancy Engineering, Zhengzhou University, Zhengzhou 450001, China

2. Yellow River Institute for Ecological Protection & Regional Coordinated Development, Zhengzhou University, Zhengzhou 450001, ChinaandZhengzhou Key Laboratory of Water Resource and Environment, Zhengzhou 450001, China

Abstract

Abstract In order to reveal the multi-time scale of rainfall, runoff and sediment in the source area of the Yellow River and improve the accuracy of annual runoff forecast, the Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) method is introduced to decompose the measured rainfall, runoff and sediment data series of the Tangnahai hydrological station in the source area of the Yellow River of China. With the co-integration theory, two new error correction models (ECMs) for the forecast of annual runoff in the source area of the Yellow River are constructed. The application of these two methods solves the problem of pseudo-regression caused by nonlinearity and non-stationary of hydrological time series. The results show that rainfall, runoff and sediment in the source area of the Yellow River have multi-time scales and the component sequences have co-integration relationships. For two new ECMs, the CEEMDAN component ECM has better forecast accuracy than the original sequence one. The relative error of all forecasted values is less than 15% except 2009, and the accuracy has reached level A.

Funder

the National Key R&D Program of China

Program for Innovative Talents (in Science and Technology) at University of Henan Province

Foundation for University Youth Key Teacher of Henan Province

Publisher

IWA Publishing

Subject

Management, Monitoring, Policy and Law,Atmospheric Science,Water Science and Technology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3