Affiliation:
1. Geustyn, Forsyth and Joubert Inc., P.O. Box 413, Stellenbosch 7600, South Africa
2. Water Resources and Public Health Engineering, University of Cape Town, Rondebosch 7700, South Africa
Abstract
The laboratory scale experimental investigation comprised a 6 day sludge age activated sludge process, the waste sludge of which was fed to a number of digesters operated as follows: single reactor flow through digesters at 4 or 6 days sludge age, under aerobic and anoxic-aerobic conditions (with 1,5 and 4 h cycle times) and 3-in-series flow through aerobic digesters each at 4 days sludge age; all digesters were fed draw-and-fill wise once per day.
The general kinetic model for the aerobic activated sludge process set out by Dold et al., (1980) and extended to the anoxic-aerobic process by van Haandel et al., (1981) simulated accurately all the experimental data (Figs 1 to 4) without the need for adjusting the kinetic constants.
Both theoretical simulations and experimental data indicate that (i) the rate of volatile solids destruction is not affected by the incorporation of anoxic cycles and (ii) the specific denitrification rate is independent of sludge age and is K4T = 0,046(l,029)(T-20) mgNO3-N/(mg active VSS. d) i.e. about 2/3 of that in the secondary anoxic of the single sludge activated sludge stystem. An important consequence of (i) and (ii) above is that denitrification can be integrated easily in the steady state digester model of Marais and Ekama (1976) and used for design (Warner et al., 1983).
Subject
Water Science and Technology,Environmental Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献