Traditional and novel reservoir management techniques to enhance water quality for subsequent potable water treatment

Author:

Bayley R.1,Ta C.T.2,Sherwin C.J.2,Renton P.J.1

Affiliation:

1. Thames Water Utilities Limited, Water Supply Technical Services, Walton Advanced Water Treatment Works, Hurst Road, Walton-on-Thames, Surrey KT12 2EG, UK

2. Thames Water Utilities Limited, Research and Development, Spencer House, Manor Farm Road, Reading, Berkshire RG2 0JN, UK

Abstract

Thames Water treats approximately 2800MI/d of water originating mainly from the lowland rivers Thames and Lee for supply to over 7.3 million customers, principally in the cities of London and Oxford. Most of the river water sources are stored in bank-side, pumped, storage reservoirs prior to treatment for potable use. Storage reservoir sizes vary and typical theoretical retention times lie between a few days to several weeks or months. During storage the riverine biota is largely replaced by lacustrine taxa which can cause problems for subsequent water treatment, particularly filtration. Recent concerns about cyanobacterial toxins has heightened interest in reservoir management. This paper reviews aspects of Thames Water's research, design and operating experiences of managing eutrophic, algal rich, reservoir stored, lowland water. Areas covered include experiences of optimising reservoir water quality to both control algal productivity and to aid subsequent potable water treatment. Traditional reservoir management techniques are reviewed as is research into biomanipulation. Whilst changes in reservoir water quality using these techniques have been marked, actual retention time and quality changes have traditionally been difficult to predict. Computational fluid dynamic (CFD) modelling has been used successfully to substantially increase retention and subsequent changes to water quality. Information from CFD modelling may also be used to reduce risks from protozoan parasites such as Cryptosporidium and Giardia.

Publisher

IWA Publishing

Subject

Water Science and Technology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3