Reduction of local scour around a bridge pier by using different shapes of pier slots and collars

Author:

Bestawy A.1,Eltahawy T.1,Alsaluli A.1,Almaliki A.1,Alqurashi M.1

Affiliation:

1. Department of Civil Engineering, College of Engineering, Taif University, Taif, Saudi Arabia

Abstract

Abstract Local scour around bridge piers is one of the main causes of bridge failure all over the world. Experimental and hydraulic models were carried out to investigate two types of scour reduction methods around a single cylindrical pier, namely the pier's slots and collars. The efficiency of various types of pier slots and circular collars around the pier's base in reducing scour were studied. A new shape of a conical collar was developed by the authors and examined along with other shapes. The results revealed that collars, in general, have more influence in reducing scour depth than slots made in the front and rear of bridge piers. The sigma-slot acts better than other tested slots, with a reduction in the scour depths of 59.3% and 52.8% at the upstream and downstream of the pier, respectively. On the other hand, the conical collar appeared to be the most effective collar shape in reducing the scour around the bridge pier, with a 61.1% reduction in the scour depth downstream of the pier. A three-dimensional laser scanner was used to capture the bed topography at the end of each experiment and contour maps of the deformed bed were produced. A one-dimensional Hydrologic Engineering Center-River Analysis System model was developed with a single bridge pier to predict the scour depth around the pier in an attempt to introduce new values for the pier nose shape factor, , which describes the tested piers.

Publisher

IWA Publishing

Subject

Water Science and Technology

Reference24 articles.

1. Local scour around cylindrical piers;Journal of Hydraulic Research,1977

2. A hooked-collar for bridge piers protection: flow fields and scour;Water,2018

3. Scour protection at bridge piers;Journal of Hydraulic Engineering, ASCE,1992

4. Failure behavior of riprap layer at bridge piers under live-bed conditions;Journal of Hydraulic Engineering, ASCE,2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3