Study of optimal allocation of water resources in Dujiangyan irrigation district of China based on an improved genetic algorithm

Author:

Li Ruihuan1,Chang Yingli1,Wang Zhaocai1

Affiliation:

1. College of Information, Shanghai Ocean University, Shanghai 201306, China

Abstract

Abstract In order to distribute water resources reasonably, it is advantageous to make full use of resources and produce high economic and social benefits. Taking the Dujiangyan irrigation area of China as an example, we discuss the idea of establishing and solving the optimal allocation model of water resources. With this aim, a two-dimensional constraint model with highest economic value, minimum water shortage, minimum underground water consumption and necessary living water demand was established. In order to solve this model, we improved a multi-population genetic algorithm, extending the genetic optimization of the algorithm into two dimensions, taking population as the vertical dimension and the individual as the horizontal dimension, and transforming the cross genetic operator to copy the genetic (crossover) operator and the mutation operator to only act on the vertical dimension, so as to optimize the allocation of such discrete objectives of water resources in the irrigation area with a particular model suitable for the region. The distribution results successfully control the water shortage rate of each area at a low level, which saves the exploitation of groundwater to the maximum extent and produces high economic benefits. The improved algorithm proposed in this paper has a kind of strong optimization ability and provides a new solution for the optimization problem with multiple constraints.

Funder

National Natural Science Foundation of China

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3