Efficiency of horizontal subsurface flow constructed wetlands cultivated with grasses of different root systems

Author:

de Jesus Fernanda Lamede Ferreira1,de Matos Antonio Teixeira2,de Matos Mateus Pimentel3

Affiliation:

1. Rural Federal University of Amazon – UFRA, Belém, Pará, Brazil

2. Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais – UFMG, Belo Horizonte, Minas Gerais, Brazil

3. Department of Engineering, Federal University of Lavras – UFLA, Lavras, Minas Gerais, Brazil

Abstract

Abstract The objective of this study was to evaluate the influence of stoloniferous and fasciculated root systems, of Tifton 85 and vetiver grass respectively, on pollutant removal for primary treatment of sewage in horizontal subsurface flow constructed wetlands (HSSF-CWs). For this, three HSSF-CWs measuring 4 m × 1 m × 0.25 m, filling with gneiss gravel # 0 (D60 of 7.0 mm and 48.4% porosity) as substrate, were used. One unit was cultivated with Tifton 85 grass (HSSFT-CW), one with vetiver grass (HSSFV-CW) and one remained uncultivated (HSSFC-CW) as a control. Sewage was applied at a flow rate of 0.53–0.80 m3 d−1, corresponding to an organic loading rate of approximately 350 kg ha−1 d−1 (biochemical oxygen demand – BOD), which resulted in a hydraulic retention time of 0.6–0.9 day. The HSSFV-CW was more efficient than the HSSFC-CW in removing dissolved solids (measured as electrical conductivity) and reducing the total suspended solids (TSS), BOD5, turbidity and sodium concentration, while the HSSFT-CW was not superior in any way. The results indicate that cultivation of vetiver grass provided increased efficiency for removing pollutants from sewage when compared with Tifton 85-grass, in the HSSF-CW.

Publisher

IWA Publishing

Subject

Water Science and Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3