Experimental investigation of turbulent flows through a boulder array placed on a permeable bed

Author:

Cao Hui12,Ye Chen3,Yan Xu-Feng1,Liu Xing-Nian1,Wang Xie-Kang1

Affiliation:

1. State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China

2. China Three Gorges Corporation, Beijing 100038, China and Three Gorges Cascade Dispatching Communication Center, Chengdu 610041, Sichuan, China

3. College of Harbour and Environmental Engineering, Jimei University, Xiamen 361000, China

Abstract

Abstract Glass beads were used to model permeable beds and boulders (simulated by plastic spherical balls) placed on the centre section of the bed. Flume experiments were conducted to investigate the hydrodynamics through a boulder array over impermeable and permeable beds (i.e. IMPB and PB). For background reference, hydrodynamics investigation was made over smooth beds (SB) with the boulder array. Through measuring the instantaneous velocity field, the major flow characteristics such as mean flow velocity, turbulence intensity, turbulent kinetic energy (TKE) and instantaneous Reynolds stresses (through quadrant analysis) were presented. The results show that the increase in bed permeability through decreasing the exposure height of boulders has little impact on the magnitude of streamwise velocity, but tends to decrease the near-bed velocity gradient, thus affecting the bed shear-stress. For turbulence, similar to the previous studies, the bed permeability is identified to enable a downward shift of the peak of turbulence intensity. The TKE budget analysis shows that bed permeability tends to inhibit the transport and diffusion processes of TKE generation. Finally, the quadrant analysis of turbulence structure clearly shows that the ejections (Q2) and sweeps (Q4) with and without the boulder array are dominated by turbulence structure of different scales.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

IWA Publishing

Subject

Water Science and Technology

Reference29 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3