Removal of fluoride using magnesium and iron complex hydroxides

Author:

Ogata Fumihiko1,Nagai Noriaki1,Nagahashi Eri1,Kadowaki Natsumi1,Saenjum Chalermpong2,Nakamura Takehiro1,Kawasaki Naohito13

Affiliation:

1. Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan

2. Faculty of Pharmacy, Chiang Mai University, Suthep Road, Muang District, Chiang Mai, 50200, Thailand and Cluster of Excellence on Biodiversity-based Economics and Society (B.BES-CMU), Chiang Mai University, Suthep Road, Muang District, Chiang Mai, 50200, Thailand

3. Antiaging Center, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan

Abstract

Abstract In this study, metal complex hydroxide materials containing magnesium to iron in molar ratios of 3:1 and 5:1, referred to in this study as Mg-Fe-CH3.0 and Mg-Fe-CH5.0, respectively, were prepared, and their adsorption capability with respect to fluoride ions was investigated. The physicochemical characteristics of adsorbents were determined using scanning electron microscopy and X-ray diffraction, and specific surface area and the number of hydroxyl groups were calculated. The adsorption behaviors and mechanism of fluoride ions were assessed. The adsorption capability of fluoride ions using Mg-Fe-CH3.0 was greater than that using Mg-Fe-CH5.0. In addition, the amount adsorbed depended on the adsorption temperatures; the adsorption was comparatively less at 5 °C than at 25 °C. Adsorption mechanism of fluoride ions was evaluated by elemental distribution analysis and binding energy. The binding energy of fluorine onto Mg-Fe-CH3.0 and Mg-Fe-CH5.0 could be detected after adsorption. Additionally, it was clear that one of the adsorption mechanisms was related to the ion exchange between fluoride ions and chloride ions in the interlayer space of the Mg-Fe-CH3.0 and Mg-Fe-CH5.0 (correlation coefficient 0.923–0.965). This study illustrates that both Mg-Fe-CH3.0 and Mg-Fe-CH5.0 have a high potential for fluoride ion adsorption from the aqueous phase.

Funder

The Research Foundation for Pharmaceutical Sciences

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3