An inexact multi-stage interval-parameter partial information programming model for water resources management under uncertainties

Author:

Chen Hongguang1,Wang Zhongjun2

Affiliation:

1. School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China

2. College of Engineering, Northeast Agricultural University, Harbin 150030, China

Abstract

Abstract The urban water shortage crisis around the world is increasing. In this study, an inexact multi-stage interval-parameter partial information programming model (IMIPM) is proposed for urban water resources planning and management under uncertainties. Optimization techniques of two-stage stochastic programming (TSP), interval-parameter programming (IPP), linear partial information theory (LPI) and multistage stochastic programming (MSP) are combined into one general framework. IMIPM is used to tackle uncertainties like interval numbers, water inflow probabilities expressed as linear partial information, dynamic features in a long planning time and joint probabilities in water resources management. It is applied to Harbin where the manager needs to allocate water from multi-water sources to multi-water users during multi-planning time periods. Four water flow probability scenarios are obtained, which are associated with uncertainties of urban rainfall information. The results show that the dynamics features and uncertainties of system parameters (such as water allocation targets and shortage) are considered in this model by generating a set of representative scenarios within a multistage context. The results also imply that IMIPM can truly reflect the actual urban water resources management situation, and provide managers with decision-making space and technical support to promote the sustainable development of economics and the ecological environment in cities.

Publisher

IWA Publishing

Subject

Water Science and Technology

Reference32 articles.

1. A two-stage stochastic programming framework for transportation planning in disaster response;Journal of the Operational Research Society,2004

2. Stochastic programming with fuzzy linear partial information on probability distribution;European Journal of Operational Research,2005

3. Chance-constrained programming: an extension of statistical method;Rustagi;Optimizing Methods in Statistics,1971

4. Inexact two-stage stochastic partial programming: application to water resources management under uncertainty;Stochastic Environmental Research and Risk Assessment,2011

5. Inexact fuzzy-stochastic mixed-integer programming approach for long-term planning of waste management – part A: methodology;Journal of Environmental Management,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3