Water purification experiment by applying flashing method with a rotating nozzle

Author:

Sonawan Hery1,Abdurrachim Halim1

Affiliation:

1. Universitas Pasundan, Bandung, Indonesia

Abstract

Abstract The flashing process is a way of exposing water in a low-pressure environment by spraying it at high pressure so that the water converts into fine particles. This process is carried out to speed up the evaporation process of water. The evaporation process carried out on freshwater aims to separate the minerals and solids dissolved in water to increase its purity. In this study, the flashing process was carried out through a rotating nozzle that was proven to increase the rate of pure water production. The flashing process experiment is carried out following an experimental design based on the non-dimensional analysis of Buckingham's pi. The rate of pure water production () as the output variable in the flashing process is affected by the nozzle rotational speed (n), nozzle hole diameter (d), feedwater pressure (Pw), vacuum pressure (Pv) and feedwater temperature (T). The feedwater temperature itself can influence the behavior of the feedwater flow in the nozzle, in this case, is density (ρ) and viscosity (μ). Based on these variables, the non-dimensional analysis of Buckingham pi has produced four dimensionless numbers. The generated empirical equations from the flashing process experiments are in the form of quadratic equations. The empirical equation applies to feedwater pressure of 7.6 bar-g, the vacuum pressure of 0.4–0.6 bar-a and nozzle rotational speed of 0–134 rpm. The optimum condensation rate in the flashing experiment was successfully obtained, especially at the nozzle rotation of 27 rpm in all vacuum pressures tested. This success is inseparable from the use of mist-nozzles that convert the feedwater flow into the mist.

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3