The quantitative analysis of the influence of environmental factors on the water yield capacity: a study in Haihe river basin, China

Author:

Zhang Qiufen1,Liu Jiakai2,Chen Lihua1,Yu Xinxiao1

Affiliation:

1. Key Laboratory of State Forestry Administration on Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China

2. College of Nature Conservation, Beijing Forestry University, Beijing 100083, China

Abstract

Abstract Many studies have qualitatively analyzed the response of hydrological characteristics to climate change in Haihe river basin, but quantitative research has been rare, which is essential for water resource management. To evaluate and quantitatively analyze the relationship between catchment runoff capacity and environmental factors, principal component analysis, step regression analysis, and sensitivity analysis were conducted. The results show that the runoff capacity of Haihe river basin was mainly controlled by vegetation types and soil texture; catchments with lower runoff capacity were mainly distributed in the upstream/northwest regions. In the catchments with middle runoff capacity, a 10% increase in precipitation (PRE), potential evapotranspiration (PE), and plant-available water coefficient (PAWC) would result in a 23.6% increase, 12.9% decrease, and 5.1% decrease in annual runoff, respectively, whereas in low runoff capacity catchments, a 10% increase in slope and leaf area index (LAI) would result in a 17.8% increase and 10.5% decrease in annual runoff, and in high runoff capacity catchments, a 10% increase in normalized differential vegetation index (NDVI) would result in a 12.6% increase in annual runoff. Soil conditions and vegetation configuration improvement in the upstream of Haihe river basin may contribute to the improvement of available water resources.

Funder

National Key R&D Program of China

Beijing Municipal Education Commission of China

Publisher

IWA Publishing

Subject

Management, Monitoring, Policy and Law,Atmospheric Science,Water Science and Technology,Global and Planetary Change

Reference56 articles.

1. HITON: a novel Markov blanket algorithm for optimal variable selection,2003

2. Hydrological projection for the Miyun Reservoir basin with the impact of climate change and human activity;Quat. Int.,2012

3. Attribution for decreasing streamflow of the Hai river basin, northern China: climate variability or human activities?;J. Hydrol.,2012

4. Climate change after tropical deforestation: seasonal variability of surface albedo and its effects on precipitation change;J. Clim.,2003

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3