Drought forecasting: A review of modelling approaches 2007–2017

Author:

Fung K. F.1,Huang Y. F.1,Koo C. H.1,Soh Y. W.1

Affiliation:

1. Department of Civil Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Bandar Sg. Long, Bandar Sg. Long, 43000 Kajang, Selangor, Malaysia

Abstract

Abstract Droughts are prolonged precipitation-deficient periods, resulting in inadequate water availability and adverse repercussions to crops, animals and humans. Drought forecasting is vital to water resources planning and management in minimizing the negative consequences. Many models have been developed for this purpose and, indeed, it would be a long process for researchers to select the best suited model for their research. A timely, thorough and informative overview of the models' concepts and historical applications would be helpful in preventing researchers from overlooking the potential selection of models and saving them considerable amounts of time on the problem. Thus, this paper aims to review drought forecasting approaches including their input requirements and performance measures, for 2007–2017. The models are categorized according to their respective mechanism: regression analysis, stochastic, probabilistic, artificial intelligence based, hybrids and dynamic modelling. Details of the selected papers, including modelling approaches, authors, year of publication, methods, input variables, evaluation criteria, time scale and type of drought are tabulated for ease of reference. The basic concepts of each approach with key parameters are explained, along with the historical applications, benefits and limitations of the models. Finally, future outlooks and potential modelling techniques are furnished for continuing drought research.

Funder

UTAR Research Fund

Publisher

IWA Publishing

Subject

Management, Monitoring, Policy and Law,Atmospheric Science,Water Science and Technology,Global and Planetary Change

Reference111 articles.

1. Stochastic simulation of the severity of hydrological drought;Water and Environment Journal,2008

2. Development of a fuzzy logic based rainfall prediction model;International Journal of Engineering and Technology,2013

3. Remote sensing of drought: progress, challenges, and opportunities;Reviews Geophysics,2015

4. A framework for processing water resources big data and application;Applied Mechanics and Materials,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3