Microalgae population dynamics growth with AnMBR effluent: effect of light and phosphorus concentration

Author:

Sanchis-Perucho P.1,Duran F.1,Barat R.1,Pachés M.1,Aguado D.1

Affiliation:

1. CALAGUA – Unidad Mixta UV-UPV, Institut Universitari d'Investigació d'Enginyeria de l'Aigua i Medi Ambient – IIAMA, Universitat Politècnica de València, Camí de Vera s/n, 46022 Valencia, Spain

Abstract

Abstract The aim of this study was to evaluate the effect of light intensity and phosphorus concentration on biomass growth and nutrient removal in a microalgae culture and their effect on their competition. The photobioreactor was continuously fed with the effluent from an anaerobic membrane bioreactor pilot plant treating real wastewater. Four experimental periods were carried out at different light intensities (36 and 52 μmol s−1 m−2) and phosphorus concentrations (around 6 and 15 mgP L−1). Four green algae – Scenedesmus, Chlorella, Monoraphidium and Chlamydomonas– and cyanobacterium were detected and quantified along whole experimental period. Chlorella was the dominant species when light intensity was at the lower level tested, and was competitively displaced by a mixed culture of Scenedesmus and Monoraphidium when light was increased. When phosphorus concentration in the photobioreactor was raised up to 15 mgP L−1, a growth of cyanobacterium became the dominant species in the culture. The highest nutrient removal efficiency (around 58.4 ± 15.8% and 96.1 ± 16.5% of nitrogen and phosphorus, respectively) was achieved at 52 μmol s−1 m−2 of light intensity and 6.02 mgP L−1 of phosphorus concentration, reaching about 674 ± 86 mg L−1 of volatile suspended solids. The results obtained reveal how the light intensity supplied and the phosphorus concentration available are relevant operational factors that determine the microalgae species that is able to predominate in a culture. Moreover, changes in microalgae predominance can be induced by changes in the growth medium produced by the own predominant species.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3