Performance of a membrane bioreactor in extreme concentrations of bisphenol A

Author:

Ouarda Yassine1,Zolfaghari Mehdi1,Drogui Patrick1,Seyhi Brahima2,Buelna Gerardo3,Dubé Rino3

Affiliation:

1. Institut National de la Recherché Scientifique-Eau, Terre et Environnement (INRS-ETE), Université du Québec, 490 rue de la Couronne, Québec, QC, Canada, G1 K 9A9

2. Centre des technologies de l'eau, 696 Avenue Sainte-Croix, Montréal, QC, Canada, H4 L 3Y2

3. Centre de Recherché Industrielle du Québec (CRIQ), 333 rue Franquet, Québec, QC, Canada, G1P 4C7

Abstract

Abstract In this study, a submerged membrane bioreactor was used to study the effect of low and high bisphenol A (BPA) concentration on the sludge biological activity. The pilot was operated over 540 days with hydraulic retention time and solid retention time of 5.5 hours and 140 days, respectively. As a hydrophobic compound, BPA was highly adsorbed by activated sludge. In lower concentrations, the biodegradation rate remained low, since the BPA concentration in the sludge was lower than 0.5 mg/g TS; yet, at an influent concentration up to 15 mg/L, the biodegradation rate was increasing, resulting in 99% BPA removal efficiency. The result for chemical oxygen demand removal showed that BPA concentration has no effect on the heterotrophic bacteria that were responsible for the organic carbon degradation. In higher concentrations, up to 16 mg of BPA was used for each gram of sludge as a source of carbon. However, the activity of autotrophic bacteria, including nitrifiers, was completely halted in the presence of 20 mg/L of BPA or more. Although nitrification was stopped after day 400, ammonia removal remained higher than 70% due to air stripping. Assimilation by bacteria was the only removal pathway for phosphorus, which resulted in an average 35% of P-PO4 removal efficiency.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3