Optimization of kinetics and operating parameters for the bioleaching of heavy metals from sewage sludge, using co-inoculation of two Acidithiobacillus species

Author:

Li Haifei1,Ye Maoyou2,Zheng Li1,Xu Yanbin1,Sun Shuiyu12,Du Qingping1,Zhong Yujian1,Ye Shengjun1,Zhang Dongsheng1

Affiliation:

1. School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China

2. Department of Environmental Engineering, Guangdong Polytechnic of Environmental Protection Engineering, Foshan 528216, China and Key Laboratory of Heavy Metals Pollution Prevention and Vocational Education of Guangdong Environmental Protection of Mining and Metallurgy Industry, Foshan 528216, China

Abstract

Abstract This study explores the potential for synchronous extraction of Cu, Cr, Ni and Zn during sewage sludge bioleaching processes, using three types of bacterial cultures: a pure culture of Acidithiobacillus ferrooxidans (A. ferrooxidans); a pure culture of Acidithiobacillus thiooxidans (A. thiooxidans); and a mixed culture of A. ferrooxidans and A. thiooxidans. Variable operating parameters included initial pH, solids concentration, sulfur concentration and ferrous iron concentration, with optimization via Box-Behnken design of response surface methodology. Results indicate that the mixed culture of A. ferrooxidans and A. thiooxidans, was the most effective at bioleaching heavy metals from sewage sludge. The optimal operating conditions were as follows: an initial pH of 2.0, with concentrations of 3% solids, 6.14 g L−1 sulfur and 4.55 g L−1 ferrous iron. Maximum extraction efficiencies obtained after 14 days of bioleaching under optimal conditions, were 98.54% Cu, 57.99% Cr, 60.06% Ni and 95.60% Zn. Bioleaching kinetics were effectively simulated using a shrinking core model to explain the leaching reaction, with modelling results suggesting that the rate was determined by the diffusion step.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3