Brewery wastewater treatment using MBR coupled with nanofiltration or electrodialysis: biomass acclimation and treatment efficiency

Author:

Sawadogo B.1,Konaté Y.1,Lesage G.2,Zaviska F.2,Monnot M.2,Heran M.2,Karambiri H.1

Affiliation:

1. Water Depollution Ecosystems and Health Laboratory (LEDES), International Institute for Water and Environmental Engineering (2iE), 1 Rue de la science, 01 BP 594, Ouagadougou, Burkina Faso

2. Institut Européen des Membranes, IEM – UMR 5635, ENSCM, CNRS, Université de Montpellier, Montpellier, France

Abstract

Abstract Breweries release significant amounts of wastewater loaded with various organic and mineral materials. Prior studies of membrane bioreactor (MBR) wastewater treatment have been conducted with very little interest granted to the conditions of biomass acclimation. This study displays biomass behavior during brewery wastewater treatment by an aerobic MBR. In addition, nanofiltration and electrodialysis have been studied as potential post-treatment to decrease mineral concentrations and permit further water reuse for agriculture. An anoxic/aerobic laboratory MBR, associated with a flat sulfonated polyether membrane was used for synthetic brewery wastewater treatment. Biomass acclimation was performed using a feeding substrate. Organic concentrations in the MBR influent varied from 700 mg COD/L to 10,600 mg COD/L (COD: chemical oxygen demand) for 110 days. The results indicate a good acclimation to effluent with high salts and organic matter loads. Steady evolution of biomass concentration and activities was achieved after 90 days of operation. A reduction of COD of around 95% was obtained with MBR and up to 99% with nanofiltration post-treatment for the reconstructed brewery effluent with an organic loading rate of 7 g COD/L·d and a solid and hydraulic retention time of 30 days and 36 hours. A good reduction of the salt content was also recorded primarily with the nanofiltration and electrodialysis processes.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3