The characteristics of heat-driven ammonium adsorption in aerobic granular sludge

Author:

He Junguo1,Xu Jie1

Affiliation:

1. School of Environment, Harbin Institute of Technology (HIT), Second campus of HIT, No.73 Huanghe Road, Nangang District, Harbin 150090, China

Abstract

Abstract Adsorption is an important step during the migration of ammonium from the aqueous phase to biomass in biological nitrogen removal processes. A deeper understanding of the adsorption mechanisms is encouraged in constructing nitrogen conversion models. In this study, the ammonium adsorption in aerobic granular sludge was investigated at different conditions. Analysis of kinetic data indicated that ammonium adsorption was a fast process and followed pseudo-second-order kinetics (adsorption rate constant k2 was between 0.031 and 0.065 g/(mg · min)). The maximum adsorption capacity and half saturation constant KL in the Langmuir isotherm model were 4.95 mgNH4+-N/g total suspended solids and 0.0126 L/mg, respectively. Effects of environmental conditions such as temperature, pH and competitive cations were also estimated. The optimum pH was 7 and the effects of competitive cations were in the order Ca2+ > Mg2+ > K+ > Na+. Values of thermodynamic parameters (ΔHƟ = −14.697 kJ/mol, ΔSƟ = −6.65 J/(mol · K)) indicated that the adsorption process was spontaneous and exothermic. Desorption tests showed that the process was reversible and low temperature had a negative effect on ammonium desorption. These findings could be useful for completing the mathematical model of the nitrogen removal process in bioreactors.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3