Novel advanced porous concrete in constructed wetlands: preparation, characterization and application in urban storm runoff treatment

Author:

Tang Van Tai1,Pakshirajan Kannan2

Affiliation:

1. Green Processing, Bioremediation and Alternative Energies Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam

2. Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India

Abstract

Abstract Common porous concrete templates (CPCT) and advanced porous concrete templates (APCT) were employed in this study to construct wetlands for their applications in pollutant removal from storm runoff. The planting ability of the concrete was investigated by growing Festuca elata plants in them. Strength of the porous concrete (7.21 ± 0.19 Mpa) decreased by 1.8 and 4.9% over a period of six and 12 months, respectively, due to its immersion in lake water. The height and weight of Festuca elata grass growth on the porous concrete were observed to be 12.6–16.9 mm and 63.4–95.4 mg, respectively, after a duration of one month. Advanced porous concrete template based constructed wetland (APCT-CW) showed better removal of chemical oxygen demand (COD) (49.6%), total suspended solids (TSS) (58.9), NH3-N (52.4%), total nitrogen (TN) (47.7%) and total phosphorus (TP) (45.5%) in storm water, when compared with the common porous concrete template based constructed wetland (CPCT-CW) with 20.6, 29.8, 30.1, 35.4 and 26.9%, respectively. The removal of Pb, Ni, Zn by the CPCT-CW unit were 28.9, 33.3 and 42.3%, respectively, whereas these were 51.1, 62.5 and 53.8%, respectively, with the APCT-CW unit. These results demonstrate that the advanced porous concrete template in constructed wetland could be employed successfully for the removal of pollutants from urban storm water runoff.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Reference26 articles.

1. Effect of temperature on wastewater treatment with natural and waste materials;Clean Technologies & Environmental Policy,2005

2. Erosion process of calcium hydroxide cements in water;Biomaterials,1991

3. Water quality of drainage from permeable friction course;Journal of Environmental Engineering,2012

4. Adsorbtion of amantadine hydrochloride wastewater: the choice of adsorbent,2010

5. The experimental study on treatment urban sewage by composite materials of zeolite. steel slag and activated carbon;Non-Metallic Mines,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3